Home (http://ipindia.nic.in/index.htm)
 About Us (http://ipindia.nic.in/about-us.htm)
 Who's Who (http://ipindia.nic.in/whos-who-page.htm)

 Policy & Programs (http://ipindia.nic.in/policy-pages.htm)
 Achievements (http://ipindia.nic.in/achievements-page.htm)

 RTI (http://ipindia.nic.in/right-to-information.htm)
 Feedback (https://ipindia.online.gov.in/feedback)
 Sitemap (shttp://ipindia.nic.in/itemap.htm)

 Contact Us (http://ipindia.nic.in/contact-us.htm)
 Help Line (http://ipindia.nic.in/helpline-page.htm)

Skip to Main Content

Patent Search

Invention Title	ENHANCING ROAD SAFETY IN CRITICAL ZONES WITH AN AUTOMATIC SPEED CONTROL SYSTEM		
Publication Number	50/2024		
Publication Date	13/12/2024		
Publication Type	INA		
Application Number	202441095629		
Application Filing Date	04/12/2024		
Priority Number			
Priority Country			
Priority Date			
Field Of Invention	ELECTRONICS		
Classification (IPC)	G08G0001010000, G08G0001052000, G08G0001160000, G06Q0050260000, G08G0001096200		
Inventor			
Name	Address	Country	1
V V VIJETHA INTI	Assistant Professor, Department of EEE, Vishnu Institute of Technology, Bhimavaram 534202	India	1
Dr CH RAJYA LAKSHMI	Associate Professor, Department of Basic Science Vishnu Institute of Technology, Bhimavaram 534202	India	1
MAMATHA DEENAKONDA	Assistant Professor, Department of EEE, Vishnu Institute of Technology, Bhimavaram 534202	India	1
A SHANUMKHA RAO	UG Student,Department of EEE, Vishnu Institute of Technology, Bhimavaram 534202	India	1
CH PRADEEP KUMAR	UG Student,Department of EEE, Vishnu Institute of Technology, Bhimavaram 534202	India	1
K HARI PRASANNA	UG Student,Department of EEE, Vishnu Institute of Technology, Bhimavaram 534202	India	1
A JWALA NAGA BANGARAM	UG Student,Department of EEE, Vishnu Institute of Technology, Bhimavaram 534202	India	1
B VENKATA RAJESH	UG Student,Department of EEE, Vishnu Institute of Technology, Bhimavaram 534202	India	1
Applicant			

Name	Address	Country	Nat
VISHNU INSTITUTE OF TECHNOLOGY	Vishnu Institute of Technology, Vishnupur, Bhimavaram 534202	India	Indi

Abstract:

Ensuring road safety in critical zones, such as school zones, high-density residential areas, and accident-prone intersections, remains a crucial public safety objective. measures, such as static signage and routine law enforcement, often fall short in preventing speeding and reducing accident risks in these sensitive areas. This work prinovative Automatic Speed Control System (ASCS) that actively monitors and manages vehicle speeds in real-time within critical zones, aiming to enhance safety and compliance. The ASCS combines advanced sensor networks, real-time camera-based speed detection, and wireless communication technologies to identify vehicles e established speed limits. Upon detecting a speed violation, the system triggers a series of automatic responses, including real-time alerts to drivers and notifications authorities. In certain environments, ASCS can communicate directly with vehicle systems to initiate speed reduction protocols autonomously, minimizing the need fc enforcement intervention and reducing human error. An adaptive feature of the ASCS is its ability to dynamically adjust speed thresholds based on factors such as tractime of day, and environmental conditions, allowing it to respond flexibly to changing road conditions. This dynamic adjustment enhances driver compliance and redulikelihood of accidents by tailoring speed limits to real-time needs. Preliminary field tests have demonstrated the potential for a significant reduction in average vehic near-miss incidents, and overall accident rates in critical zones. The ASCS, by combining proactive speed management with responsive adaptation to road conditions, promising advancement in automated road safety technology, contributing to safer and more sustainable urban traffic management.

Intellectual Property India

Complete Specification

Description: This innovative system is designed to control vehicle speed and enhance safety in hazardous zones, significantly reducing the risk of accidents. By lever, advanced technologies such as LoRa communication, speed encoders, motor drives, and DC motors, the system ensures precise vehicle control in areas where caul paramount. At the heart of the system is the LoRa-02 Ai-Thinker, which facilitates wireless communication between the vehicle and an external control unit. This lor communication technology allows for effective data transmission between the transmitter shown in figure 1 installed in the vehicle and the receiver as shown in figure located in critical zones. This real-time communication is essential for implementing timely safety measures.

The speed encoder plays a crucial role by enabling real-time monitoring of vehicle speed. It continuously provides feedback to the control unit, ensuring that the sy: aware of the vehicle's current speed at all times. This data is vital for determining when speed adjustments are necessary, particularly as the vehicle approaches dat areas.

To manage speed and torque, the system utilizes a motor drive connected to a DC motor. The motor drive is responsible for adjusting the vehicle's speed, ensuring operates within safe limits. When the vehicle enters a designated danger zone—such as school zones, hospital zones, or sharp U-turns—the LoRa communication s activates. The external control unit receives data from the vehicle and sends commands to the motor drive to gradually reduce the vehicle's speed.

As the vehicle approaches the danger zone, the system automatically initiates a deceleration process. This controlled reduction in speed enhances safety for pedest cyclists, and other road users who may be in the vicinity. This ensures that the vehicle can respond appropriately to various conditions, further enhancing overall ro safety. Overall, this comprehensive approach to vehicle speed control in critical zones not only improves safety but also promotes responsible driving behaviors. By automatically adjusting vehicle speed in response to real-time data, the system effectively minimizes risks and fosters a safer environment for everyone on the road

View Application Status

Terms & conditions (http://ipindia.gov.in/terms-conditions.htm) Privacy Policy (http://ipindia.gov.in/privacy-policy.htm)

Copyright (http://ipindia.gov.in/copyright.htm) Hyperlinking Policy (http://ipindia.gov.in/hyperlinking-policy.htm)

Accessibility (http://ipindia.gov.in/accessibility.htm) Archive (http://ipindia.gov.in/archive.htm) Contact Us (http://ipindia.gov.in/contact-us.htm) Help (http://ipindia.gov.in/help.htm)

Content Owned, updated and maintained by Intellectual Property India, All Rights Reserved.

Page last updated on: 26/06/2019